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Abstract 

We describe an exact hard-spheres scattering model for calculating the gas phase mobilities of polyatomic ions. Ion 
mobility measurements have recently been used to deduce structural information for clusters and biomolecules in the gas 
phase. In virtually all of the previous ion mobility studies, mobilities were evaluated for comparison with the experimental 
data using a projection approximation. Comparison of the collision integrals calculated using the exact hard-spheres 
scattering model with those estimated using the projection approximation shows that large deviations, over 20%, occur for 
some geometries with grossly concave surfaces. 

The mobility of  a polyatomic ion depends on its 
structure [1-3]. Ion mobility measurements can re- 
solve structural isomers and provide information 
about their geometries. This technique has been par- 
ticularly valuable in the study of medium-sized clus- 
ters where spectroscopic information is difficult to 
obtain [4-10]. For example, chains, a variety of  ring 
isomers, graphite sheets, and fullerenes have been 
observed for carbon clusters [7-10]. Recently, this 
approach has also been used to examine the confor- 
mations of  peptides [11] and proteins [12] in the gas 
phase. Furthermore, instrumental advances now make 
it possible to perform high-resolution ion mobility 
measurements where isomers with very similar ge- 
ometries can be resolved, as demonstrated by some 
recent studies of  (NaCI),C1- clusters [13]. Informa- 
tion about the geometries is obtained by comparing 

measured mobilities with mobilities calculated for an 
assumed geometry. The zero-field mobility can be 
obtained from [14] 

K ( 1 8 r r ) ' / 2 [  1 1 ]  ./2 ze  1 1 

16 m b ( k B T )  ' / 2  a ( ~ l )  N " 

(1) 

In this expression, m is the mass of  the ion, m b is 
the mass of  a buffer gas atom, N is the buffer gas 
number density, T is the temperature, ze  is the 
charge, and $2~2~ l) is the orientationally averaged 
collision integral. The collision integral is related to 
the scattering angle, the angle between the trajectory 
before and after a collision between the ion and a 
buffer gas atom. The orientationally averaged colli- 
sion integral is calculated by averaging the momen- 
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tum transfer cross section over the relative velocity 
and the collision geometry [15]: 

1 f2~d fo-~ q~f2~ ~r •(1,1)  : 0 d ~p sin 
--avg 4 "rr2 "o "o dy~-  
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In this expression 0, q~ and y define the collision 
geometry, x(O, ~o, 7, g, b) is the scattering angle, g 
is the relative velocity,/x is the reduced mass, and b 
is the impact parameter 1. For a collision between 
two hard spheres Eq. (2) reduces to "rrb2in, where 
bmi n is the hard-sphere contact distance. For a poly- 
atomic ion, the most rigorous approach to evaluate 
the collision integral is to propagate trajectories in a 
realistic potential to determine the scattering angle, 
while averaging over the variables in Eq. (2). Mesleh 
et al. [16] have recently employed this method to 
calculate mobilities for fullerenes using an effective 
potential consisting of a sum of two-body Lennard- 
Jones interactions and ion-induced dipole interac- 
tions. However, this approach is extremely computa- 
tionally intensive even for small clusters with rela- 
tively symmetric geometries, and requires informa- 
tion about the intermolecular potential which is often 
not readily available. In all of the other previous 
work, the collision integral has been approximated 
by 

4,rr 2 1 f 2 = f = - o  fo 2~ $,-](1, I) 2 
,IT brain, d0 0 dq~sin~ dy  ~ a v g  

(3) 

where bm~ n is the minimum impact parameter for a 
collision geometry defined by 0, q~, and 3' that 
avoids a hard-sphere contact with any atom in the 
cluster. This approach was first employed by Jarrold 

and Constant [17] to deduce information about the 
shapes of silicon clusters. They used simple shapes 
so that the integrals could be solved analytically. 
Von Helden et al. [7] generalized the model by 
replacing the cluster by a collection of hard spheres, 
one for each atom in the cluster, and performing the 
integrations numerically. This method has been 
widely adopted in the last few years [4-12,18-20]. 

While it is clear that Eq. (3) ignores the long-range 
interactions between the polyatomic ion and buffer 
gas atom, it is perhaps less obvious that it also 
ignores all the details of the scattering process and 
effectively replaces the collision integral by an orien- 
tationally averaged projection. In this contribution 
we examine the validity of this approximation. We 
will show that for any body with only convex sur- 
faces, the exact orientationally averaged hard-spheres 
collision integral is equal to the orientationally aver- 
aged projection. However, for bodies with concave 
surfaces this is not true. We have developed a rigor- 
ous hard-spheres scattering model to determine the 
magnitude of the deviation. For some geometries the 
collision integral determined from the exact hard- 
spheres scattering model differs from the orientation- 
ally averaged projection by over 20%. Since agree- 
ment between measured and calculated mobilities of 
better than 2% is generally used as a criterion for 
assigning geometries in these studies [7], this clearly 
could lead to the wrong structural assignments! 

For a collision between two hard spheres the 
collision integral, ,(2, is equal to the projection, P 
(g2 = f db 2b(1 - cos X) = 'rr b2in )" In the following 
we prove that this is true for all locally convex 
bodies. Consider a finite planar figure with an arbi- 
trary shape and area S. When this figure is posi- 
tioned in space such that the angle between the 
normal to its plane and the vector x is equal to some 
a, oJ= 2Scos3a and p = Scos a, where ~o is the 
momentum transfer cross section and p is the pro- 
jection along a specific direction. Integrating over all 
angles 

Note that the definition of the collision integral employed 
here differs from that given by Hirschfelder et al. [15]. Following 
Mason and McDaniel [14], a factor of ( k B T / 2 ~ I z )  j/2 present in 
the definition of Hirschfelder et al. is incorporated into Eq. (1) 
rather than in the equation for the collision integral. 

'rr f ~ / 2  c o s 3 a  sin a da S 
J2 = 2S-~ f~/2 ada 2 '  (4) 

"rr f~/2cosasinada S 
P = S T f~/2 ada = ~ ,  (5) 
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thus 12 = P. Since any finite geometric surface can 
be considered as a set of infinitesimally small, flat 
differential elements, one can express its cross sec- 
tion (projection) as a sum of the cross sections 
(projections) of these elements, if and only if these 
elements do not interact. There are two mechanisms 
for interactions: mutual shadowing of elements from 
direct collisions and multiple collisions where an 
atom is reflected from one element to another. To 
exclude both these effects, the requirement that the 
surface be locally convex at each point is necessary 
and sufficient. Whenever a surface satisfies this re- 
quirement, /2 = P. 

While, strictly speaking, the above derivation does 
not prove that bodies with concave surfaces could 
not have 12 = P, it strongly suggests that this equal- 
ity does not hold for such bodies in general. To 
verify this, we have developed a computer code to 
find the true hard-sphere collision integral for an 
arbitrary body. This is accomplished by solving 

'go f0 12aC~g ') = dO d~o sin dy 
4 71"2 "0 

~ c  

x£ db2b(1-cosx(O, , ,b)) (6/ 
numerically. The scattering angle, X, is determined 
by following the trajectory through any and all of its 
collisions with the cluster until it leaves the cluster 
for good. This accounts for multiple collisions where 
a trajectory is reflected from one part of the cluster 
onto another part. Since all polyatomic ions consist 
of discrete atoms, parts of their surfaces are techni- 
cally concave. Consequently, the exact hard-sphere 
collision integrals of all polyatomic ions deviate 
from their projections. However, one would expect 
larger deviations to occur for structures that are also 
concave on a gross scale, such as rings and cups. To 
determine the magnitude of these deviations we have 
performed calculations for a range of carbon cluster 
geometries. Carbon clusters have been the object of 
intense investigation over the last decade, including 
extensive ion mobility studies of carbon cluster 
cations and anions. A wide variety of isomers have 
been observed: linear chains, planar monocyclic, bi- 
cyclic and polycyclic rings, graphite sheets, 
fullerenes, fullerene dimers, and fullerene clusters. 
The existence of cups [21] and three-dimensional 
rings [19,20] has also been suggested. 

In order to calculate the exact hard-sphere colli- 
sion integral and the projection it is necessary to 
define a value for the hard-sphere contact distance. 
This was done by fitting the measured 298 K mobil- 
ity of fullerene C6+0, treating the hard-sphere contact 
distance as an adjustable parameter. Fullerene C~- 0 
was selected because its geometry is experimentally 
known [22]. The hoard-sphere contact distances ob- 
tained were 2.81 A using the exact hard-spheres 
scattering model and 2.86 ,~ using the projection 
approximation. If  the same hard-sphere contact dis- 
tance is used with both models, then the collision 
integral obtained from the exact hard-spheres scatter- 
ing model is larger than that estimated, from the 
projection approximation, in all the cases we have 
examined. Calculations using these parameters have 
been performed for a range of carbon cluster geome- 
tries. The geometries used are as follows. Linear 
chains and rotationally symmetric monocyclic rings 
were constructed using an interatomic distance [23] 
of 1.30 ,~. Bicyclic rings generated by a [2 + 2] 
cycloaddition and large (n > 90, n is the number of 
atoms) tricyclic rings were optimized in plane using 
the strain minimization procedure of Shelimov et al. 
[10]. Geometries for small tricyclic rings (planar or 
nearly planar) were obtained from von Helden et al. 
[7] and Strout et al. [19]. Graphite sheets are 
MNDO-optimized geometries [24] up to n = 70 and 
unoptimized hexagonal assemblies for larger sizes. 
The fullerene geometries employed were experimen- 
tal [22] for n = 60 and MNDO for n = 20 and 34 
(Shelimov [24]), 70 (Raghavachari [25]), 120 (Murry 
et al. [26]) and 180 (Bakowies et al. [27]). For 
n = 240 and n = 540 fullerenes, calculations were 
performed using the geometries obtained by both 
Bakowies et al. [27] using MNDO and by Scuseria 
[28] with ab initio Hartree-Fock. 

Fig. 1 shows a plot of the quantity 12REL = ,O(2.81 
• ~) /P(2 .86 ,~) -- 1 (relative deviation of the collision 
integral calculated using the exact hard-sphere scat- 
tering model from the orientationally averaged pro- 
jection) against (cluster size) j/3 for a variety of 
different carbon cluster geometries. The relative de- 
viations range from - 3 %  to over +5%. Note that 
significant deviations are observed for linear chains, 
graphite sheets and fullerenes even though these 
geometries do not have grossly concave surfaces. 
The deviations result from 'surface roughness' such 
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as the dips in the middle of hexagons. For these three 
geometries, the deviations become more positive with 
increasing cluster size. This is because, for all con- 
tiguous bodies, the average surface curvature de- 
creases with increasing size provided that the shape 
is constant, and this curvature mitigates the effects of 
surface roughness by reducing the number of multi- 
ple collisions. Similarly, the fact that ,ORE L is al- 
ways smaller for fullerenes than for the graphite 
sheet isomers is due to the higher average curvature 
of fullerene surfaces. For all the ring isomers OREL 
shows a maximum. Space-filling models of small 
rings indicate that they do not really have holes, 
hence the number of multiple collisions is small. As 
the ring size increases, collisions in which the buffer 
gas atom bounces from one side of the ring to the 
other become important and ~REL increases. As the 
ring becomes even larger, the probability of multiple 
collisions decreases and the deviations decrease. Note 
that the maximum ~"~REL increases on moving from 
monocyclic to tricyclic rings, while the position of 
maximum shifts to larger cluster size. 
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Fig. 2. Plot o f  the quantity .O(2.81 ,~ ) /P (2 .86  , ~ ) -  1 against the 
number o f  atoms for  cups derived from C6o (squares), C24 o (S) 
(circles), and C54 o (triangles) fullerenes, as described in the text. 
The fullerene geometries are from York  et al. [36] for  C24o and 
from Scuseria [28] for Cs4 o. The lines are the f i f th-order regres- 
sions through the points. 
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Fig. 1. Comparison of the collision integrals calculated using the 
exact hard-spheres scattering model with those estimated using the 
projection approximation. The figure shows a plot of the quantity 
,O(2,81 .~)/P(2.86 ,~,)- 1 against the (number of atoms in the 
cluster) I/3 for a variety of different geometries (see text). 

We now address a geometry with grossly concave 
surfaces: cups. Smalley [21] has suggested that cups, 
or open fullerenes, are transient intermediates in the 
gas-phase assembly of fullerene cages. Experimental 
studies have shown that fullerenes can be synthe- 
sized by the coalescence and subsequent annealing 
of carbon rings [29-31]. Furthermore, there are no 
features present in the ion mobility measurements in 
the region allocated for cups by the projection ap- 
proximation [7]. The merits of the competing models 
for fullerene assembly have been the subject of a 
lively debate, as reflected in a recent review by 
Goroff [32]. Thus the accurate evaluation of the 
collision integrals for cups is of considerable impor- 
tance. We have calculated collision integrals for a 
number of cups using the projection approximation 
and the exact hard-spheres scattering model. The 
cups were constructed by cutting a fullerene by a 
plane and resecting the part on one of the sides. For 
spherical fullerenes, this procedure allows one to 
control two parameters: the curvature of the cup and 
its angular extent. Fig. 2 shows a plot of the quantity 
,ORE L against the number of atoms in the cups, for 
cups obtained from C60, C2+ 0, and C54 o fullerenes. 
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Deviations of over 10% are observed for some of the 
cups derived from C540. The deviations show max- 
ima for cups with around half the number of atoms 
as the closed-cage fullerene from which they were 
derived. As a cup builds up, the number of multiple 
reflections inside increases and the deviation in- 
creases. However, once a cup starts to close, the 
entrance decreases in size, and the number of trajec- 
tories undergoing multiple reflections goes down. In 
a series of cups with the same angular extent, the 
deviations are larger for cups derived from larger 
fullerenes. Examination of space filling models shows 
that the concave surface area inside a cup increases 
as a fraction of the total surface area as the cup 
becomes larger. For cups derived from C60, the 
concave surface inside is small and so are the devia- 
tions. We are currently performing trajectory calcula- 
tions with a realistic potential [16] to determine if 
any of the features in the experimental data previ- 
ously assigned to graphite sheets [10] could be cups. 

Van der Waals clusters of up to several hundred 
C60 fullerenes have been studied by Martin et al. 
[33]. These are examples of objects that show ex- 
treme surface roughness. We have calculated colli- 
sion integrals for a range of fuilerene clusters using 
the exact hard-spheres scattering model for compari- 
son with those estimated using the projection approx- 
imation. Calculations were performed for icosahedral 
geometries suggested by the 'magic '  numbers ob- 
served in the abundance spectrum [33], and for the 
decahedral and fcc geometries found in the calcula- 
tions of Wales and coworkers [34]. Fig. 3 shows the 
relative deviation plotted against the (number of C60 
units)-~/3. The deviations are nearly linear on this 
scale, increasing with the number of C60 units to 
over 23% for (C60)147. The linear dependence results 
because the average surface curvature of compact 
bodies is inversely proportional to their linear dimen- 
sions. So this is analogous to other cluster size 
effects that scale [35] with n-  ~/3 

In conclusion, the comparisons presented here 
show that substantial deviations occur between the 
collision integrals estimated using the projection ap- 
proximation and those calculated using an exact 
hard-spheres scattering model. The deviations are 
large enough that the features observed experimen- 
tally could be assigned to the wrong geometries. The 
largest deviations occur for geometries with grossly 
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Fig. 3. Plot of the quantity O(2.81 ,~.)/P(2.86 ,~)- 1 against the 
(number of C6o fullerene units)- 1/3 for clusters with icosahedral 
growth (rhombi), decahedral geometries (triangles), and fcc ge- 
ometries (squares). The line is the first-order regression through 
all the data. The value for the [2+ 2] cycloaddition C60 dimer is 
also shown (empty rhombus). The geometry for the dimer is from 
Strout et al. [37]. 

concave surfaces where multiple scattering effects 
are very important. While the most rigorou~ ap- 
proach to evaluating the collision integral is to per- 
form trajectory calculations using a realistic poten- 
tial, this approach requires tremendous amount of 
computer time as well as information about the 
intermolecular potential. The exact hard-spheres scat- 
tering model described here should be more reliable 
than the projection approximation employed in pre- 
vious work, while only slightly more computation- 
ally expensive. 
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